4.11 Statistical tests

scientia

4.11.1 χ^2 test for independence

Consider the following set of data:

	Action	Horror	Comedy	Total
color-blind	120	90	40	250
non color-blind	110	95	45	250
Total	230	185	85	500

To be able to do a χ^2 test, you first need to put the data in a matrix.

Enter the data

(1) Press , select Matrix & Vector > Create > Matrix. Set the matrix amount of rows and columns (here: 2×3), and enter the data.

³⁰ Store the matrix as A. To do that press **ctrl** then **v** and enter A:

√ 1.1	▶		*Doc		CAPS F	RAD 📘	\times
[120 [110	90 95	$\begin{bmatrix} 40\\45 \end{bmatrix} \rightarrow a$		[120. [110.	90. 95.	40. 45.	
I							
							4

Do the test

(1) Press \vec{m} , select Statistics > Stat Tests > χ^2 2-way Test. Set matrix [A] as Observed. Press \vec{n} , these results should be displayed:

"Title"	"χ² 2–way Test"
''X ² ''	0.864
"PVal"	0.649
"df"	2.
"ExpMatrix"	"[]"
"CompMatrix"	"[]"

4.11.2 χ^2 goodness of fit test

SCIENTIA

Consider a person counting the amount of cyclists he sees passing by his street each day:

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
50	60	42	48	52	58	61

The null and alternative hypthesis are

 H_0 : An equal amount of cyclists pass by his street each day.

 H_1 : A different amount of cyclists pass by his street each day.

We want to know at a significance level of 0.05 if he must accept null hypothesis.

- ① Create a new document and select Add List & Spreadsheet.
- ② Fill column A with the amount of cyclist each day. Fill column B with the average amount of cyclists (here: 52.8).

∢ 1.	1 🕨	*Doo	0	rad 🚺 🗙
	A	в	с	D
=				
1	50.	52.8		
2	60.	52.8		
3	42.	52.8		
4	48.	52.8		
5	52.	52.8		
В				4 1

3 Press , select Statistics > Stat Tests > χ^2 GOF. Fill the parameters as follows:

χ² GOF	
Observed List:	a[] 🕨
Expected List:	b[]
Deg of Freedom, df:	6
1st Result Column:	c[]
Draw:	Shade P Value
	OK Cancel

Press enter . These results should be displayed:

TI-NSPIRE CX MANUAL FOR THE IB

Title	χ² GOF
χ²	5.57
PVal	0.473
df	6.
CompLis	{0.14848

The results should be $\chi^2 = 5.57$ (for the critical value) an p = 0.473 (for the significance level), rounded.

We must then accept the null hypothesis.

4.11.3 The student's t-test

Consider the following data:

x_1	2.8	3.2	2.7	3.5	3.0	2.9	4.1	3.9	
x_2	3.1	3.5	2.8	3.7	4.2	2.6	3.2	2.9	3.8

You want to test whether the x_1 data is on average a than x_2 ($\mu_1 > \mu_2$), at a significance level of 10%

① Create a new document and select Add List & Spreadsheet. Fill column A with x1 values and column B with x2 values.

∢ 1.	1	*Doo	:	RAD 📘	\times
	A	в	с	D	
=					
1	2.8	3.1			
2	3.2	3.5			
3	2.7	2.8			
4	3.5	3.7			
5	3.	4.2			•
В				•	•

② Press , select Stastistics > Stat Tests > 2-Sample t Test. Select Data as data input and fill the parameters as follows:

TI-NSPIRE CX MANUAL FOR THE IB

2–Sample t Test			
List 1:	a[]	•	
List 2:	b[]	►	
Frequency 1:	1	•	
Frequency 2:	1	►	
Alternate Hyp:	Ha: μ1 > μ2	►	
Pooled:	No	►	`
		_	•
	ОК		Cancel

Press enter . These results should be displayed:

Title	2–Samp
Alternate	μ1 > μ2
t	-0.191
PVal	0.575
df	14.8

The *t*-value should be t = -0.191 and the *p*-value should be p = 0.575 (rounded). Therefore we must accept the null hypothesis (we **cannot** infer that $\mu_1 > \mu_2$).