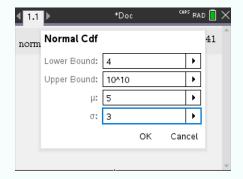

4.9 Normal distribution

In the following subsections, we will only compute probabilities involving " \leq ". However, since the normal distribution is continuous, you could replace all the " \leq " by a "<", and the result would be the same.

4.9.1 Compute $P(X \le a)$ with Normal Cdf function

Consider a random variable $X \sim \mathcal{N}(5, 3^2)$. Suppose you want to compute $\mathbf{P}(X \leq 4)$.

Press , select Probability > Distributions > Normal Cdf, choose a huge negative value for lower (like -10^{10}), and upper : 4 (here $\mu = 5$ and $\sigma = 3$):


Press then enter

Here the result should be 0.369 (rounded).

4.9.2 Compute $P(X \ge a)$ with Normal Cdf function

Consider a random variable $X \sim \mathcal{N}(5, 3^2)$. Suppose you want to compute $\mathbf{P}(X \ge 4)$.

Press , select Probability > Distributions > Normal Cdf, choose a huge positive value for **upper** (like 10^{10}), and **lower** : 4 (here $\mu = 5$ and $\sigma = 3$):

¹The IB notation for the normal distribution is $\mathcal{N}(\mu, \sigma^2)$, but the TI-Nspire works with σ . We write 3^2 to express that $\sigma = 3$.

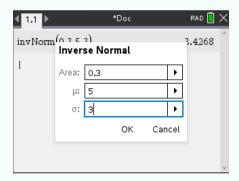
Press then enter

Here the result should be 0.631 (rounded).

4.9.3 Compute $P(a \le X \le b)$ with Normal Cdf function

Consider a random variable $X \sim \mathcal{N}(5, 3^2)$. Suppose you want to compute $\mathbf{P}(-2 \le X \le 6)$.

Press , select Probability > Distributions > Normal Cdf, choose upper : 6, and lower : -2 (here $\mu = 5$ and $\sigma = 3$):



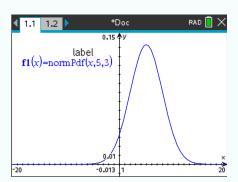
Press then enter . The result should be 0.621 (rounded).

4.9.4 Find x when $P(X \le x) = c$ with Inverse Normal function

Consider a random variable $X \sim \mathcal{N}(5, 3^2)$. Suppose you want to know for what x we have $\mathbf{P}(X \leq x) = 0.3$.

Press , select Probability > Distributions > Inverse Normal, choose as **Area**: 0.3 (here $\mu = 5$ and $\sigma = 3$):

Press then enter . The result should be x = 3.43 (rounded).


4.9.5 Plot a normal distribution

Consider a random variable $X \sim \mathcal{N}(5, 3^2)$.

- ① To plot the distribution in the calculator, create a new document and select Add Graphs.
- ② Enter f1(x) = normPdf(x,5,3). Press
- 3 Choose an appropriate window. Here we chose the following:

Window Settings				
XMin:	-20			
XMax:	20			
XScale:	Auto			•
YMin:	-0.0132974940446			
YMax:	0.1462783813683			
YScale:	Auto			•
		ОК	Can	cel

The graph should look like this:

