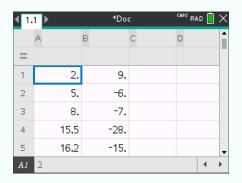
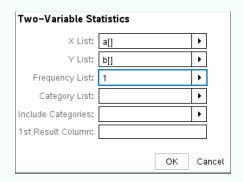


Line of best fit 4.4


keywords: pearson moment product correlation coefficient, linear regression, spearman's rank coefficient.

Suppose you want to do a linear regression on the following table:

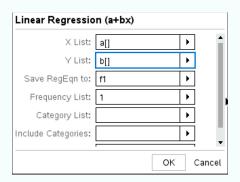
\boldsymbol{x}	2	5	8	15.5	16.2	14	12	13	2.5	1	0.5	-3
$oldsymbol{y}$	9	-6	-7	-28	-15	-20	-15	-20.3	9	4.1	6	12.1


4.4.1 Enter the data

Create a new document and select Add Lists & Spreadsheet, and fill the list A with the x-values, and the list B with the y-values:

4.4.2 Find \bar{x} and \bar{y}

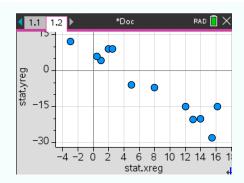
and select Statistics > Stat Calculations > Two-Variable Statistics, and fill the parameters as follows:



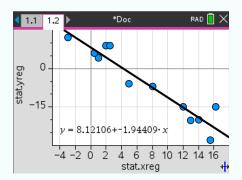
enter . The results are displayed in the table and should be $\bar{x}=7.23$ and $\bar{y}=-5.93$

4.4.3 Compute the line of best fit

- ① Press and select Statistics > Stat Calculations > Linear Regression (ax+b).
- 2 Choose the parameters as follows:


3 Press and the following result should appear:

	=LinRegB
Title	Linear R
RegEqn	a+b*x
а	8.12106
b	-1.94409
r²	0.90294


4.4.4 Graph the line of best fit with the data

- ① Press and select Add Data & Statistics.
- ② In the y-axis name, select 'stat.yreg'. In the x-axis name, select 'stat.xreg'.

- ③ choose an appropriate window to have all the points fit nicely in the screen. Here, we chose Xmin=-5, Xmax=18, Ymin=-30 and Ymax=15 (since the minimal x-value is -3, we chose a slightly smaller Xmin=-5)
- ④ Press and select Analyze > Regression > Show Linear (ax+b). Press enter

