4.16 Various tests

scientia

4.16.1 Do a test for population mean

There are two cases when it comes to computing the confidence interval for a normal population: one if σ is known, and the other when σ is unknown.

Finding the confidence interval when σ is known

Suppose you have to find a 95% confidence interval for a population mean, given the following information:

- sample mean $\bar{x} = 14;$
- sample size n = 35;
- population standard deviation $\sigma = 4$.

C-Level is the 95% given in the question

Press enter . The following should display:

∢ 1.1 ▶	*Doc	rad 📘 🗙		
zInterval 4,14,35,0.95: stat.results				
	"Title"	''z Interval''		
	"CLower"	12.7		
	"CUpper"	15.3		
	"X"	14.		
	"ME"	1.33		
	"n"	35.		
	"σ"	4.		
1				
1				

Tip: If you are given a data set and not the sample mean and sample size, you can fill a list first, select data as data input method in the **ZInterval** screen and add the list, putting **Freq:1**.

Finding the confidence interval when σ is unknown

Suppose you have to find a 95% confidence interval for a population mean, given the following information:

- sample mean $\bar{x} = 12;$
- sample size n = 19;
- sample standard deviation s = 6.3.

Press , select Statistics > Confidence Intervals > t Interval. Choose Stats as data input method. Then, fill as follows:

Press en

The following should display:

TI-NSPIRE CX MANUAL FOR THE IB

∢ 1.1 ▶	*Doc	RAD 📘 🕽
tInterval 12,6.	3,19,0.95: stat.resi	ults
	"Title"	"t Interval"
	"CLower"	8.96
	"CUpper"	15.
	" x "	12.
	"ME"	3.04
	"df"	18.
	"sx := sn-1x"	6.3
	"n"	19.

Tip: If you are given a data set and not the sample mean, sample size and sample standard deviation, you can fill a list first, select **data** in the **TInterval** screen and add the list, putting **Freq:1**.

4.16.2 Do a test for proportion of a population

scientia

Suppose we want to test that more than 32% of Switzerland ate *fondue* this month. We collect a random sample of 1'000 Swiss, and find out that 350 of them did eat a *fondue*. What can we conclude at a significance level of $\alpha = 0.05$?

Press , select Statistics > Stat Tests > 1-Prop z Test and fill the parameters as follows:

 p_0 is the 32%, and $> p_0$ is because H_1 :"more than 32%"

Press enter . The following should display:

◀ 1.1 ▶	*Doc	RAD 📘	×
zTest_1Prop 0.32,350,1000,1: stat.results			
	"Title"	"1-Prop z Test"	
	"Alternate Hyp"	"prop > p0"	
	"z"	2.03	
	"PVal"	0.021	h
	"ĝ"	0.35	
	"n"	1.E3	
			-

The p-value being 0.021 < 0.05, we reject the null hypothesis, and conclude that more than 32% of the population ate *fondue* this month.

Find the confidence interval for a population proportion 4.16.3

Suppose you have to find a 95% confidence interval for a population proportion, given the following information:

- number of "successes" x = 12;
- number of trials n = 19.

Press , select Statistics > Confidence Intervals > 1-Prop z Interval and fill the parameters

as follows:

1.1	▶	*Doc	RAD 📘	\times
I	1-Prop z Inte	erval		
	Successes, x:	12	•	
	n:	19	•	
	C Level:	0.95	•	k
		ОК	Cancel	
		ОК	Cancel	

C-Level is the 95% given in the question

Press enter . The following should display:

4 1.1 ▶	*D	oc	rad 📋 🗙		
zInterval_1Prop 12,19,0.95: stat.results					
	"Title"	"1-Prop z Inte	rval"		
	"CLower"	0.415			
	"CUpper"	0.848			
	"ĝ"	0.632			
	"ME"	0.217			
	"n"	19.	J		
I					
			-		