1.15 Eigenvalues and eigenvectors

1.15.1 Find eigenvalues of a matrix

SCIENTIA

Suppose you want to know the eigenvalues of the following matrix:

$$A = \begin{pmatrix} -2 & -24\\ 3 & 16 \end{pmatrix}$$

① Create a new document, select Add Calculator.

- ② Create the matrix. To do this, press and select Matrix & Vector > Create > Matrix. Enter the number of rows (2) and the number of columns (2). Press . Write the matrix values.
- 3 Store the matrix and name it a : press **ctrl v** and write 'a' . Press **enter**
- Press , select Matrix & Vector > Advanced > Eigenvalues. Write 'a' inside the brackets of 'eigVl()'. Press .

∢ 1.1 ▶	*Doc	rad 📘 🗙
$\begin{bmatrix} -2 & -24 \\ 3 & 16 \end{bmatrix} \rightarrow a$		-2. -24. 3. 16.
eig∨1(a)		{4.,10.}
1		
		~

The results should be 4 and 10, giving us the eigenvalues.

1.15.2 Find eigenvectors of a matrix

Consider the following matrix :

$$A = \begin{pmatrix} -2 & -24\\ 3 & 16 \end{pmatrix}$$

We want to know the eigenvector (x, y) associated to it.

① Write the homogeneous linear system associated to the eigenvalue:

$$\begin{bmatrix} A - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{pmatrix} 0 \\ 0 \end{bmatrix}.$$

Here:

SCIENTIA

$$\begin{cases} -6x - 24y = 0\\ 3x + 12y = 0 \end{cases}$$

② Solve the linear system on your calculator. To do this, and select Algebra > Solve System of Equations > Solve System of Linear Equations. The calculator should display the following:

∢ 1.1 ▶	*Doc	CAPS RAD	\times
solve $\left\{ \begin{cases} -6 \cdot x - 2 \\ 3 \cdot x + 12 \end{cases} \right\}$	$\begin{pmatrix} 4 \cdot y = 0 \\ 2 \cdot y = 0 \end{pmatrix}, \{x, y\}$		
	x=-4.•	c1 and y= c1	
1			
			v

y is free, and x = -4y

This means that the vectors

 $t\begin{pmatrix} -4\\ 1 \end{pmatrix}$

(here we replaced y with t, which is more commonly used for a free variable) are the eigenvectors. A possible eigenvector is

$$x_1 = \begin{pmatrix} -4\\ 1 \end{pmatrix}$$

By the same process you can compute the eigenvector x_2 associated to $\lambda_2 = 10$. One possibility is

$$x_2 = \begin{pmatrix} -2\\1 \end{pmatrix}$$

2 Functions