4.8 Binomial distribution

Consider $X \sim \mathcal{B}(8, 0.3)$.

4.8.1 Compute P(X = a)

Consider $X \sim \mathcal{B}(8, 0.3)$. Suppose you want to compute $\mathbf{P}(X = 4)$.

- ① Create a new document, select Add Calculator
- ⁽²⁾ Press , select Probability > Distributions > Binomial Pdf
- 3 Enter the number of trials, the probability of success and the x-value.

۹ ۹	.1 🕨	*Doc		CAPS R	AD [$ \times$
Γ.						^
'	Binomial Pdf					
	Num Trials, n:	8			•	
	Prob Success, p:	0.3			•	
	X ∨alue:	4			F	
			ок	Canc	el	
						-

Press OK. The result should be 0.136 (rounded).

4.8.2 Compute $P(X \le a)$

Consider $X \sim \mathcal{B}(8, 0.3)$. Suppose you want to compute $\mathbf{P}(X \leq 5)$.

- ① Create a new document, select Add Calculator
- 2 Press , select Probability > Distributions > Binomial Cdf
- ③ Enter the number of trials, the probability of success, the lower bound and the upper bound.

1	.1 🕨	*Doc		CAPS	RAD	
L	Binomial Cdf					
	Num Trials, n:	8			•	
	Prob Success, p:	0.3			•	
	Lower Bound:	0				
	Upper Bound:	5			•	
	•		ОК	Can	ncel	
	*		ОК	Can	ıc	el

④ Press enter and the result is displayed. The result should be 0.988708.

NB: If you wanted to compute $\mathbf{P}(X < 5)$ instead, you would calculate $\mathbf{P}(X \le 4)$ (since the binomial distribution is discrete).

4.8.3 Find x when $P(X \le x) \ge c$

Some calculators may not have this functionality

Consider $X \sim \mathcal{B}(8, 0.3)$. Suppose you want to find the smallest x for which $\mathbf{P}(X \leq x) \geq 0.6$.

- 1 Create a new document, select Add Calculator
- ② Press , select Probability > Distributions > Inverse Binomial

③ Enter the cumulative probability, the number of trials and the probability of success.

1	.1 🕨	*Doc	CAPS	RAD [
I	Num Successes	5			
	Cumulative Prob:	0.6			
	Num Trials, n:	8		•	
	Prob Success, p:	0.3		•	
	Display Result:	Matrix Form			
		ОК	Car	ncel	

④ Press enter and the result is displayed. The result should be 3.

Note that **Binomial Cdf(8,0.3,3)=0.806**, which is **not** 0.6. But since **Binomial Cdf(8,0.3,2)=0.552** is smaller than 0.6, **Inverse Binomial** gives us 3 (even though 2 gives an area closer to 0.6, the calculator gives the first integer that gives an area bigger or equal to 0.6)

4.8.4 Plot a binomial distribution

To plot a binomial distribution, we will create two lists, one being the possible amount of successful trials, and the other their probability, and then plot it.

① Create a new document, select Add List & Spreadsheets

SCIENTIA

- In the first column: type n as the column name and fill the cell with numbers from 0 to n (n=8 in our case). In the second column: type bin as the column name and type binompdf(8,0.3) in the cell at the line ' ='
- ③ Type enter and the probability of success for each number of trials is displayed.

∢ 1.1 ▶		*Doc	RA	vd 📋 🗙
	An	B bin	С	^
Ξ		=binompdf(8,0.3)		
1	0	0.057648		
2	1	0.19765		
3	2	0.296475		
4	3	0.254122		
5	4	0.136137		-
С				• •

- (1) Now we need to plot the graph. Type **ctrl** and *********, select Add Data & Statistics.
- ⑤ Select Click to add variable on the x-axis, choose n. Select Click to add variable on the y-axis, choose bin.
- To connect data points: press , select Plot Properties > Connect Data Points. The following plot should be displayed:

