5.16 Euler method for differential equations

Consider the differential equation

$$\frac{dy}{dx} = x - y^2,$$

with initial condition y(1.3) = 2.35. Suppose we want to approximate the value of y(2.2) rounded up to four significant figures, and using steps of size h = 0.1.

5.16.1 Input the sequences

scientia

We want to iterate over the x's and the y's. The Euler method tells us to choose the sequences defined by

$$x_{n+1} = x_n + 0.1 \tag{1}$$

$$y_{n+1} = y_n + 0.1 \cdot (x_n - y_n^2) \tag{2}$$

The initial condition tells us that we start with x_1 and y_1 . Here, $x_1 = 1.3$ and $y_1 = 2.35$ (because $y(x_1) = 2.35$).

In the TI-Nspire, sequences are written u(n) and v(n) and not x_n and y_n . Thus in the following lines "u(n)" will mean " x_n " (so for example $u(2) = x_2 = 1.4$), and "v(n)" will mean " y_n ".

- ① Create a new document, press and select Add Calculator.
- 2 Press $\overline{}$, select Actions > Define.
- ③ Type u(n) =, press and select
- ④ On the first line, write the initialization. On the second line, write the recursive expression.
- **5** Do the same for v(n)

∢ 1.1 ▶	*Doc	CAPS RAD 📘 🗡
Define $u(n) = \begin{cases} 1 \\ 1 \end{cases}$	n=1 n(n-1)+0.1, n>1	Done
Define $\nu(n) = \begin{cases} 2 \\ \nu \end{cases}$	2.35, $u(n-1)+0.1\cdot (u(n-1)+0.1\cdot (u(n-1)+0.1$	-(v(n−1))2 [▶] Done

5.16.2 Find the result asked

Since it is asked to compute y(2.2), we read u(10) = 2.2 (recall that u(10) is x_{10}), so our answer is v(10) = 1.42 (since v(10) is y_{10} and Euler method tells us that $y_{10} \approx y(x_{10})$):

∢ 1.1 ▶	*Doc	CAPS RAD 📘 >
Define $u(n) = \{i$	u(n-1)+0.1, n>1	
Define $\nu(n) = \begin{cases} 2 \\ 1 \end{cases}$	2.35, $u(n-1)+0.1\cdot (u(n-1))$	-(v(n-1))2 [•] Done
u(10)		2.2
v(10)		1.41525

Thus, $y(2.2) \approx 1.42$.