4.9 Normal distribution

In the following subsections, we will only compute probabilities involving " \leq ". However, since the normal distribution is continuous, you could replace all the " \leq " by a "<", and the result would be the same. To have a user-friendly interface of the normal distribution functions, see 4.4.1 on page 42.

4.9.1 Compute $P(X \le a)$ with normal cdf function

Consider a random variable $X \sim \mathcal{N}(5, 3^2)$.³ Suppose you want to compute $\mathbf{P}(X \leq 4)$. Press and, where $\mu = 5$ and $\sigma = 3$:

NORMAL FLOAT AUTO REAL DEGREE MP
normalcdf lower: -10^10 upper:4 μ:5 σ:3 Paste

Press then on **Paste** and enter

Here the result should be 0.369 (rounded).

4.9.2 Compute $P(X \ge a)$ with normalcdf function

Consider a random variable $X \sim \mathcal{N}(5, 3^2)$. Suppose you want to compute $\mathbf{P}(X \ge 4)$.

Press 2nd, vars, normalcdf(, choose lower: 4, and a huge positive value for upper (like 10^{10}) (here $\mu = 5$ and $\sigma = 3$):

³The IB notation for the normal distribution is $\mathcal{N}(\mu, \sigma^2)$, but the TI-84 works with σ . We write 3² to express that $\sigma = 3$.

Press then on Paste and entry solve

Here the result should be 0.631 (rounded).

4.9.3 Compute $P(a \le X \le b)$ with normal cdf function

Consider a random variable $X \sim \mathcal{N}(5, 3^2)$. Suppose you want to compute $\mathbf{P}(-2 \leq X \leq 6)$. Press 2nd , distr , normalcdf(, and set lower: -2 and upper: 6:

NORMAL FLO	AT AUTO	REAL	RADIAN	MP 🚺
lower: upper: µ:5 σ:3∎ Paste	-2 6	alc	đf	

Press **paste** and entry solve . The result should be 0.621 (rounded).

4.9.4 Draw $P(a \le X \le b)$ with ShadeNorm function

Consider a random variable $X \sim \mathcal{N}(5, 3^2)$. Consider again $\mathbf{P}(-2 \leq X \leq 6)$. Press and , **DRAW**, ShadeNorm(, and choose lower: -2 and upper: 6 (here $\mu = 5$ and $\sigma = 3$):

NORMAL FLOAT AUTO REAL RADIAN MP Press [<] or [>] to select an option
ShadeNorm
lower:-2
upper:6
μ:5
σ:3
Color: RED KX
Draw

The area is $\mathbf{P}(-2 \le X \le 6)$

4.9.5 Find x when $P(X \le x) = c$ with invorm function

Consider a random variable $X \sim \mathcal{N}(5, 3^2)$. Suppose you want to know for what x we have $\mathbf{P}(X \leq x) = 0.3$.

Press 2nd, vars and invNorm(, choose as area: 0.3, and tail:LEFT⁴ (the tail is at left because our area starts at $-\infty$):

NORMAL FLOAT AUTO REAL RADIAN M	^{IP} 🚺
invNorm area:0.3 μ:5 σ:3∎ Tail: LEFT CENTER RI Paste	GHT

Press then **paste** and enter . The result should be x = 3.43 (rounded).

Use tale: CENTER if the question is $\mathbf{P}(x_1 \leq X \leq x_2) = c$. You should get in this example $\{x_1, x_2\} = \{3.84, 6.16\}$ (rounded). Use tale: RIGHT if the question is $\mathbf{P}(x \leq X) = c$. You should get in this example x = 6.57 (rounded).

4.9.6 Plot a normal distribution

Consider a random variable $X \sim \mathcal{N}(5, 3^2)$.

⁴some calculators do not have this option

TI-84 manual for the IB

- ① To plot the distribution in the calculator, press y=1, z_{nd} , w_{res} , normalPdf(. Press res for the x value, select μ and σ according to your problem (here, $\mu = 5$ and $\sigma = 3$), and validate by pressing **Paste**.
- 2 choose an appropriate window (see 2.3.2 on page 24 to do so). Here we chose the following:

NORMAL	FLOAT	AUTO	REAL	RADIAN	MP	
WINDC Xmir Xma> Xsc] Ymir Yma> Ysc] Xres AX=0 Trac)W <= 20 L=1 = -0.2 <= 0.1 L=0.1 S=1 0.151 ceSte) 2 1 2 1 515 8 9=0	1519	51515 30303	03030	03

The graph should look like this:

SCIENTIA

