

5.5 Definite integrals

5.5.1 Compute the definite integral of a function

Suppose you want to compute the following definite integral:

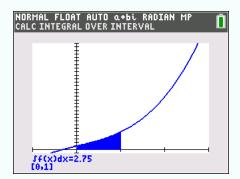
$$\int_0^1 (x^3 + 3x + 1) \mathrm{d}x$$

In the main screen, press **math**, **fnInt(**, and fill the parameters as follows:

NORMAL F	LOAT AUT	0 a+bi	DEGREE	MP	
$\int_{0}^{1} (X^{3} + 3)$	3X+1)c	IX ∎			
10					

The result should be 2.75.

5.5.2 Draw the area under a curve


Suppose you want to draw the area between 0 and 1 of the following function:

$$f(x) = x^3 + 3x + 1$$

① Enter the function by pressing y=

- ② choose an appropriate window (with window)). Here we chose Xmin=-1, Xmax=3, Ymin=-1 and Ymax=30
- (3) Press $\frac{\text{table 15}}{\text{graph}}$, $\frac{\text{calc f4}}{\text{trace}}$, $\int f(\mathbf{x}) d\mathbf{x}$. Press $\mathbf{0}$ $\frac{\text{entry solve}}{\text{enter}}$ to set lower limit at x = 0, and $\mathbf{1}$

- ${\bf 2.75}$ is the area of the blue region.
 - $\ensuremath{\left[0,1\right]}$ is the interval