4.11 Statistical tests

SCIENTIA

4.11.1 χ^2 test for independence

Consider the following set of data:

	Action	Horror	Comedy	Total
color-blind	120	90	40	250
non color-blind	110	95	45	250
Total	230	185	85	500

To be able to do a χ^2 test, you first need to put the data in a matrix.

Enter the data

A]:
NORMAL FLOAT AUTO REAL RADIAN MP MATRIX[A] ■ ×1 [0]

⁽²⁾ Ignoring the "Total" rows and columns, set the matrix amount of rows and columns (here: 2×3), and enter the data:

NORMAL FLOAT A	UTO REAL	RADIAN	MP []
MATRIX[A] 120 90 110 95	2 ×3 40 45]		
[A](1,1)= 120				

Do the test

1	Press stat , TESTS, X ² -Test
	Set matrix [A] as Observed by pressing $2nd$, \mathbf{x}^{1} , 1 .
	Set a new matrix, e.g. matrix [B], as Expected by pressing $[2nd]$, $[x^2]$, $[2]$:
	NORMAL FLOAT AUTO REAL RADIAN MP PRESS [<] OR [>] TO SELECT AN OPTION X2-Test Observed: [A] Expected: [B] Color: BLUE Calculate Draw

2 Press Calculate. The following result should appear:

<u>x2-Test</u>	
1 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	
P=0.6491978888 df=2	

df means "degrees of freedom"

4.11.2 χ^2 goodness of fit test

Consider a person counting the amount of cyclists he sees passing by his street each day:

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
50	60	42	48	52	58	61

The null and alternative hypthesis are

 H_0 : An equal amount of cyclists pass by his street each day.

 H_1 : A different amount of cyclists pass by his street each day.

We want to know at a significance level of 0.05 if he must accept null hypothesis.

- (1) Press state , Edit... and enter the data in a list (here: L_1)
- 2 fill L_2 with the average amount of cyclists (here: 52.8).

Tip: you can highlight L_2 and write $0^*L_1+52.\,8$ to fill it quickly.

NORMAL	FLOAT AL	JTO a+bi	, RADIAN	MP			
L1	L2	Lз	L4	Ls	2		
20 60 40 52 58 81 	52.8 52.8 52.8 52.8 52.8 52.8 52.8 52.8						
L2(8)=							

(3) Press state , TESTS, X² GOF-Test and fill the parameters as follows:

df = 7 - 1 (degrees of freedom),

Color doesn't matter

Press Calculate

The results should be $\chi^2 = 6.467$ (for the critical value) an p = 0.373 (for the epsignificance level), rounded.

We must then accept the null hypothesis.

4.11.3 The student's t-test

Consider the following data:

x_1	2.8	3.2	2.7	3.5	3.0	2.9	4.1	3.9	
x_2	3.1	3.5	2.8	3.7	4.2	2.6	3.2	2.9	3.8

You want to test whether the x_1 data is on average a than x_2 ($\mu_1 > \mu_2$), at a significance level of 10%

NORMAL	FLOAT AL	JTO a+bi	, DEGREE	MP	Ō
L1	L2	Lз	L4	Ls	2
2.8 3.2 2.7 3.5 3 2.9 4.1 3.9	3.1 3.5 2.8 3.7 4.2 2.6 3.2 2.9 3.8				
L					

2 Press stat , TESTS, 2-SampTTest... and enter the parameters as follow:

Press Calculate.

The *t*-value should be t = -0.191 and the *p*-value should be p = 0.575 (rounded). Therefore we must accept the null hypothesis (we **cannot** infer that $\mu_1 > \mu_2$).