
4.9 Normal distribution

In the following subsections, we will only compute probabilities involving " \leq ". However, since the normal distribution is continuous, you could replace all the " \leq " by a "<", and the result would be the same. To have a user-friendly interface of the normal distribution functions, see 4.4.1 on page 63.

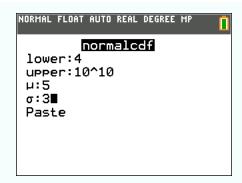
4.9.1 Compute $P(X \le a)$ with normalcdf function

Consider a random variable $X \sim \mathcal{N}(5, 3^2)$. Suppose you want to compute $\mathbf{P}(X \leq 4)$.

Press and , normalcdf(, choose a huge negative value for lower (like -10^{10}), and upper:4 (here $\mu = 5$ and $\sigma = 3$):

Press then on Paste and enter

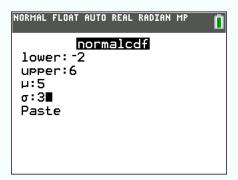
Here the result should be 0.369 (rounded).


4.9.2 Compute $P(X \ge a)$ with normalcdf function

Consider a random variable $X \sim \mathcal{N}(5, 3^2)$. Suppose you want to compute $\mathbf{P}(X \ge 4)$.

Press and , normalcdf(, choose lower: 4, and a huge positive value for upper (like 10^{10}) (here $\mu = 5$ and $\sigma = 3$):

³The IB notation for the normal distribution is $\mathcal{N}(\mu, \sigma^2)$, but the TI-84 works with σ . We write 3^2 to express that $\sigma = 3$.


Press then on Paste and enter

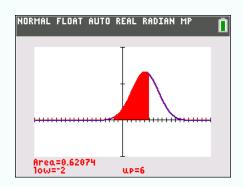
Here the result should be 0.631 (rounded).

4.9.3 Compute $P(a \le X \le b)$ with normalcdf function

Consider a random variable $X \sim \mathcal{N}(5, 3^2)$. Suppose you want to compute $\mathbf{P}(-2 \le X \le 6)$.

Press 2nd , vars , normalcdf(, and set lower: -2 and upper: 6:

Press paste and enter . The result should be 0.621 (rounded).


4.9.4 Draw $P(a \le X \le b)$ with ShadeNorm function

Consider a random variable $X \sim \mathcal{N}(5, 3^2)$. Consider again $\mathbf{P}(-2 \le X \le 6)$. Press and press problem (and choose lower: -2 and upper: 6 (here $\mu = 5$ and $\sigma = 3$):

Press then on Draw and enter . The following should be displayed:



The area is $\mathbf{P}(-2 \le X \le 6)$

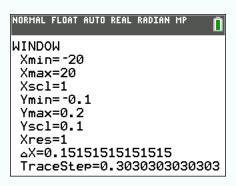
4.9.5 Find x when $P(X \le x) = c$ with invNorm function

Consider a random variable $X \sim \mathcal{N}(5, 3^2)$. Suppose you want to know for what x we have $\mathbf{P}(X \leq x) = 0.3$.

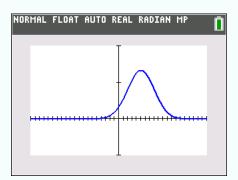
Press and inuNorm(, choose as area: 0.3, and tail: LEFT⁴ (the tail is at left because our area starts at $-\infty$):

Press then paste and enter . The result should be x = 3.43 (rounded).

Use tale: CENTER if the question is $\mathbf{P}(x_1 \leq X \leq x_2) = c$. You should get in this example $\{x_1, x_2\} = \{3.84, 6.16\}$ (rounded). Use tale: RIGHT if the question is $\mathbf{P}(x \leq X) = c$. You should get in this example x = 6.57 (rounded).


4.9.6 Plot a normal distribution

Consider a random variable $X \sim \mathcal{N}(5, 3^2)$.


⁴some calculators do not have this option

- ① To plot the distribution in the calculator, press y=, z_{nd} , z_{nd} , normalPdf(. Press for the x value, select μ and σ according to your problem (here, $\mu=5$ and $\sigma=3$), and validate by pressing Paste.
- ② choose an appropriate window (see 2.3.2 on page 36 to do so). Here we chose the following:

The graph should look like this:

