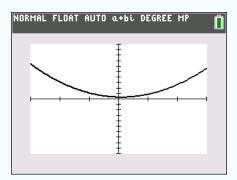


2.7 Composite functions

2.7.1 Graph the composition of two functions

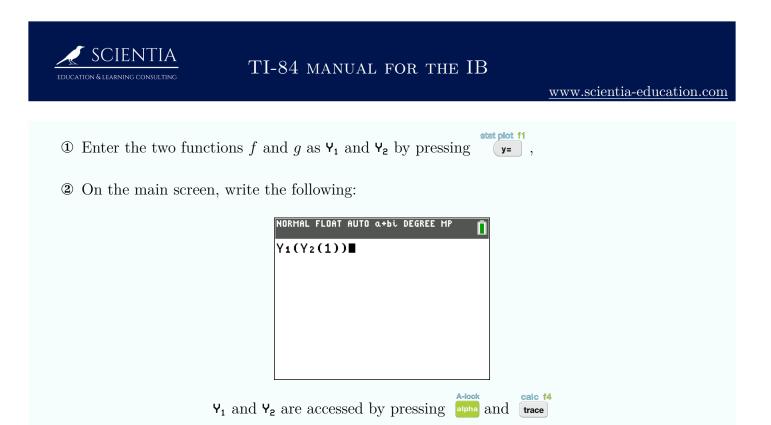
Suppose you want graph $(f \circ g)(x)$ for the following functions:


$$f(x) = x^2 - 2x + 5,$$
 $g(x) = \frac{x+3}{4}.$

- ① Enter the two functions f and g as Ψ_1 and Ψ_2 by pressing $y_{=}$, and deactivate the graph of the two functions (see points ① and ② of subtopic 2.3.3 on page 38 for the details)
- 2 Select $Y_3,$ and write the following:

Y₁

	NORMAL FLOAT AUTO a+bi DEGREE MP	Ó	
	Plot1 Plot2 Plot3		
	Y1=X ² −2X+5		
	$V_2 = \frac{X+3}{4}$		
	■NY3目Y1(Y2)■		
	NY4=		
	■NY5= ■NY6=		
	NY7=		
	■ \ Y8=		
and \mathbf{Y}_{i}	are accessed by pressing	alpha a	nd trace


③ Choose an appropriate window (see 2.3.2 on page 36 for the details). The following graph should be displayed (with Xmin=-30, Xmax=30, Ymin=-100, Xmax=100:

2.7.2 Compute specific value of the composition of two functions

Suppose you want to evaluate $(f \circ g)(1)$ for the following functions:

$$f(x) = x^2 - 2x + 5$$
 $g(x) = \frac{x+3}{4}$.

The result should be 4. Thus $(f \circ g)(1) = 4$.