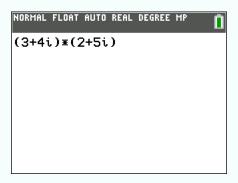


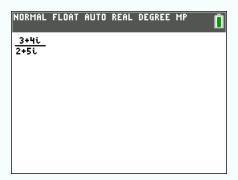
1.12 Complex numbers


To write the imaginary unit i, press 2nd,

1.12.1 Operations on complex numbers

Consider the complex numbers 3 + 4i and 2 + 5i.

Suppose you want to add them. For this, just add them as you would add real numbers. The result should be 5 + 9i.

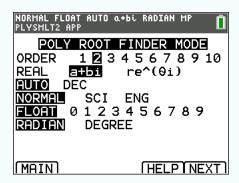

Suppose you want to multiply them. For this, put each of them in brackets and multiply each bracket:

* is not mandatory

Press enter . The result should be -14 + 23i.

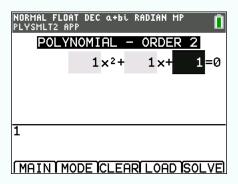
Suppose you have to divide them. For this, press alpha, and n/d to display a fraction, and put the numbers in each part of the fraction:

Press enter . The result should be about 0.897 - 0.241i, or $\frac{26}{29} - \frac{7}{29}i$. If you want to switch between decimal and fraction writing, press elements, state plot f1 and FT and FT and FT.


1.12.2 Solve polynomial equations (complex solutions)

Suppose you have to solve the equation $x^2 + x + 1 = 0$.

The right hand side must be 0


① Press Plysmit2, Polynomial Root Finder, and fill it as follows:

The order is the biggest power of x. Be sure to select

Press NEXT with the graph button.

2 Fill the equation as follows:

Press SOLVE with the graph button. The results should be $x_1 = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$ and $x_2 = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$, or $x_1 = -0.5 + 0.866i$ and $x_2 = 0.5 + 0.866i$ (rounded).

To change from one display to the other, press with the graph button.